TRPV1 is a physiological regulator of μ-opioid receptors.

نویسندگان

  • Paul C Scherer
  • Nicholas W Zaccor
  • Neil M Neumann
  • Chirag Vasavda
  • Roxanne Barrow
  • Andrew J Ewald
  • Feng Rao
  • Charlotte J Sumner
  • Solomon H Snyder
چکیده

Opioids are powerful analgesics, but also carry significant side effects and abuse potential. Here we describe a modulator of the μ-opioid receptor (MOR1), the transient receptor potential channel subfamily vanilloid member 1 (TRPV1). We show that TRPV1 binds MOR1 and blocks opioid-dependent phosphorylation of MOR1 while leaving G protein signaling intact. Phosphorylation of MOR1 initiates recruitment and activation of the β-arrestin pathway, which is responsible for numerous opioid-induced adverse effects, including the development of tolerance and respiratory depression. Phosphorylation stands in contrast to G protein signaling, which is responsible for the analgesic effect of opioids. Calcium influx through TRPV1 causes a calcium/calmodulin-dependent translocation of G protein-coupled receptor kinase 5 (GRK5) away from the plasma membrane, thereby blocking its ability to phosphorylate MOR1. Using TRPV1 to block phosphorylation of MOR1 without affecting G protein signaling is a potential strategy to improve the therapeutic profile of opioids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional interaction between TRPV1 and μ-opioid receptors in descending antinociceptive pathway activates glutamate transmission and induces analgesia

The transient receptor potential vanilloid-1 (TRPV1) receptor is involved in peripheral and spinal nociceptive processing and is a therapeutic target for pain. We have shown previously that TRPV1 in the ventrolateral periaqueductal grey (VL-PAG) tonically contributes to brainstem descending antinociception by stimulating glutamate release into the rostral ventromedial medulla and OFF neuron act...

متن کامل

Modality-specific peripheral antinociceptive effects of μ-opioid agonists on heat and mechanical stimuli: Contribution of sigma-1 receptors

Morphine induces peripherally μ-opioid-mediated antinociception to heat but not to mechanical stimulation. Peripheral sigma-1 receptors tonically inhibit μ-opioid antinociception to mechanical stimuli, but it is unknown whether they modulate μ-opioid heat antinociception. We hypothesized that sigma-1 receptors might play a role in the modality-specific peripheral antinociceptive effects of morp...

متن کامل

The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

BACKGROUND The vanilloid receptor 1 (TRPV1) is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA) pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pai...

متن کامل

Morphine Reduces Expression of TRPV1 Receptors in the Amygdala but not in the Hippocampus of Male Rats

Background: Chronic use of opioids usually results in physical dependence. The underlying mechanisms for this dependence are still being evaluated. Transient receptor potential vanilloid type 1 (TRPV1) are important receptors of pain perception. Their role during opioid dependence has not been studied well. The aim of this study was to evaluate the effect of morphine-dependence on the expressio...

متن کامل

An Experimental Study on Spinal Cord µ-Opioid and α2-Adrenergic Receptors mRNA Expression Following Stress-Induced Hyperalgesia in Male Rats

Background: Intense stress can change pain perception and induce hyperalgesia; a phenomenon called stress-induced hyperalgesia (SIH). However, the neurobiological mechanism of this effect remains unclear. The present study aimed to investigate the effect of the spinal cord µ-opioid receptors (MOR) and α2-adrenergic receptors (α2-AR) on pain sensation in rats with SIH. Methods: Eighteen Sprague-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 51  شماره 

صفحات  -

تاریخ انتشار 2017